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ABSTRACT

The semi-implicit time-stepping scheme is often applied to the terms responsible for fast waves in large-scale
global weather prediction and general circulation models to remove the time step restrictions associated with
these waves. Both the phase and amplitude of fast gravity waves are distorted in such models. Because gravity
waves carry very little energy, this distortion does not significantly impact the large-scale flow. At mesoscale
resolutions the semi-implicit scheme can also be applied, but it has been generally assumed that the treatment
of gravity waves is inaccurate at these scales as well. In this paper mesoscale convective systems in the
midlatitudes driven by diabatic heating are studied. According to a recently developed mathematical theory,
only gravity waves with wavelengths larger than the characteristic length scale of the heat source contain a
significant amount of energy, and here it is shown that these gravity waves are accurately reproduced by a semi-
implicit discretization of the 3D compressible governing equations with a time step appropriate for the dominant
solution component. It will also be shown that the structure equation reduces to the gravity wave equation of
the mathematical theory when the appropriate scaling arguments are applied.

1. Introduction

The semi-implicit time-stepping scheme is often ap-
plied to the terms responsible for fast waves in large-
scale global weather prediction and general circulation
models to remove the time step restrictions associated
with these waves (e.g., Williamson and Laprise 1999).
Both the phase and amplitude of the fastest gravity
waves are severely distorted in such numerical models.
Because these waves carry very little energy, this dis-
tortion does not significantly impact the large-scale flow.
An early paper analyzing the semi-implicit method in
the context of a heat conduction problem is Johansson
and Kreiss (1963). In meteorology, the semi-implicit
method was first introduced by Robert (1969) and Kwi-
zak and Robert (1971). Elvius and Sundström (1973)
analyzed the stability and accuracy of the scheme for
the shallow water equations in periodic and limited-area
domains and proposed well-posed boundary conditions
for the latter. The semi-implicit scheme has also been
applied at mesoscale resolutions (Tapp and White 1976;
Cullen 1990; Tanguay et al. 1990; Golding 1992) and
at convective scales by Robert (1993). However, it is
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generally assumed that the treatment of gravity waves
is inaccurate at these scales as well and an error analysis
for the nonhydrostatic compressible equations analo-
gous to Elvius and Sundström (1973) has not appeared
to date in the literature.

Recently Browning and Kreiss (1997) have developed
a mathematical theory proposing that a midlatitude me-
soscale storm driven by cooling and heating consists of
two components that do not interact significantly with
each other. The dominant component of the solution
contains most of the energy in the vicinity of the storm
and is meteorologically significant. The second solution
component consists of large-scale gravity waves that
have the same time and depth scales and the same am-
plitude of pressure perturbations as the dominant com-
ponent. These gravity waves propagate horizontally
away from the storm and can last for a considerable
period of time after the storm has dissipated. This theory
does not rely on the normal modes of the homogeneous
system, but rather is based on a scaling of the equations
in physical space, that is, on the standard bounded de-
rivative theory approach (Kreiss 1979, 1980). Thus, the
new theory is applicable in the troposphere both inside
and outside the region of diabatic heating.

An important question is whether or not large-scale
gravity waves generated by a mesoscale storm can be
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resolved by a particular numerical model. The purpose
of this paper is to prove mathematically and demonstrate
with computer simulations that a 3D semi-implicit time
discretization scheme for the nonhydrostatic compress-
ible governing equations can accurately reproduce both
the dominant and gravity wave components of the so-
lution at a computational cost, which is competitive with
the multiscale system of Browning and Kreiss (1986,
1994). Indeed, it seems reasonable to expect that a time
step chosen for sufficient accuracy of the dominant com-
ponent might also produce accurate approximations of
the large-scale gravity waves because these waves have
the same timescale as the dominant component. Essen-
tially it will be shown that the semi-implicit scheme can
accurately reproduce gravity waves with wavelengths
larger than the characteristic length scale of the heat
source. This result also fits directly into the Browning
and Kreiss (1997) theory because the structure equation
reduces to the simplified gravity wave equation of their
theory when the appropriate scaling arguments are ap-
plied. The reduced system of equations described by the
authors can be used to simulate the dominant component
of the mesoscale solution.

The outline of this paper is as follows. Section 2
contains the scaling of the 3D compressible governing
equations associated with midlatitude mesoscale con-
vective systems (MCSs). For comparison purposes, it is
shown that the structure equation for the full 3D system
reduces to the gravity wave equation when the appro-
priate scaling arguments are employed. Fourier analysis
of the full system provides the continuous eigenvalues
that are needed for error estimates. Section 3 presents
an analysis of the stability and accuracy of the semi-
implicit scheme. Section 4 provides details of the semi-
implicit discretization and presents an O(N3 logN) fast
elliptic solver. Finally, section 5 contains simulation re-
sults for a theoretical forcing function that closely
matches observed MCS characteristic scales. Here it is
shown that the semi-implicit solution closely matches
an explicit simulation.

2. Mesoscale dynamics

In this paper we consider the nonhydrostatic fully
compressible governing equations as specified in
Browning and Kreiss (1986). The model is formulated
with respect to a horizontally homogeneous time in-
variant, and hydrostatically balanced base-state refer-
ence atmosphere. Thermodynamic variables are decom-
posed into a sum of the base state and perturbations:

s 5 s9[s (z) 1 1], p 5 p (z) 1 p9,0 0

r 5 r (z) 1 r9,0

where

]p gp0 05 2gr 5 2 ,0]z RT0

and the equation of state is p0(z) 5 r0(z)RT0(z). The gas
constant for dry air is R, g 5 cp/cy, and cp 2 cy 5 R.

After introduction of the base-state, the prognostic
equations for momentum (u, y, w), perturbation pressure
p9, and thermodynamic perturbation s9 are given by

du 1 ]p9
1 2 f y 5 0

dt r ]x0

dy 1 ]p9
1 2 fu 5 0

dt r ]y0

dw 1 ]p9
1 2 B 5 0

dt r ]z0

ds9
2 s̃(w 2 H ) 5 0

dt

dp9
1 p gD 2 gr w 5 G,0 0dt

where B is the buoyancy, D is the divergence, f is the
Coriolis parameter, and H and G represent heat sources.
The Exner function is isR/c 21/gpp 5 (p/p ) and s 5 rp00

inversely proportional to the potential temperature u 5
T/p,

121/gp R00 21 21/gu 5 T , u 5 rp 5 as.
R /c1 2 pp p00

The Brunt–Väisällä frequency and stratification pa-2N0

rameter s̃ are defined as follows:

1 ]s 1 ]u0 02N 5 gs̃, s̃ 5 2 5 .0 s ]z u ]z0 0

The buoyancy B in the vertical motion equation is de-
rived by expanding the inverse of potential temperature
in a Taylor series about the reference state

21 21/g(u 1 u9) 5 a(r 1 r9)(p 1 p9)0 0 0

and retaining the first-order terms

u9 r9 1 p9
21 21/gu 1 2 5 ar p 1 1 2 .0 0 01 2 1 2u r g p0 0 0

Simplifying, it follows that

u r9 1 p9
2 5 s9 5 2

u r g p0 0 0

and therefore the buoyancy is given by

g
B(s9, p9) 5 2(gs9 1 p̃p9), p̃ 5 .

gp0

For the characteristic scales of the mesoscale motions
analyzed by Browning and Kreiss (1986, 1994, 1997),
the corresponding set of scaled governing equations is

du 1 ]p9
1 2 f y 5 0

dt r ]x0
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dy 1 ]p9
1 1 fu 5 0

dt r ]y0

dw 1 ]p9
22 221 « 2 « B 5 0

dt r ]z0

ds9
222 « s̃(w 2 H ) 5 0

dt

dp9
23 23 221 « p gD 2 « gr w 5 « G.0 0dt

The same notation is used for both dimensional and
nondimensional variables. Parameters like the Rossby
number are replaced by the appropriate power of « 5
0.1. The reduced system of Browning and Kreiss (1986,
1994, 1997) is derived by using the balance between
the vertical velocity and heating that must occur for
slowly evolving mesoscale solutions. Replacing w by H
in the time-dependent equations for u, y, and p and then
neglecting small terms (which is permissible because it
can be proved that for slowly evolving solutions, space
and time derivatives that are initially of order unity will
remain so for the timescale of the motion), the reduced
system is

du 1 ]p9
1 2 f y 5 0

dt r ]x0

dy 1 ]p9
1 1 fu 5 0

dt r ]y0

]u ]y
1 5 RF ,p]t ]y

where d/dt 5 ]/]t 1 u]/]x 1 y]/]y 1 H]/]z and Fp 5
2Hz 1 p̃r0H. Here R is a projection operator that re-
moves the long horizontal waves of Fp when the lateral
dimensions of the domain are much larger than the heat-
ing. These waves are instead resolved in the gravity
wave equation derived below.

We now derive the structure equation for the unforced
system, as has been standard practice, then examine the
impact of adding a mesoscale heating term. Consider
the linearized equations with Coriolis terms neglected
(they can be treated explicitly because they are a small
part of the fast modes):

]u 1 ]p9
1 5 0 (2.1)

]t r ]x0

]y 1 ]p9
1 5 0 (2.2)

]t r ]y0

]w 1 ]p9
22 221 « 2 « B 5 0 (2.3)

]t r ]z0

]s9
222 « s̃w 5 0 (2.4)

]t

]p9
23 231 « p gD 2 « gr w 5 0. (2.5)0 0]t

The derivation is easily carried out in Fourier space for
periodic domains. However, it is presented here in phys-
ical space for comparison with the new theory and nu-
merical algorithms. First, the buoyancy B is eliminated
from the equations, resulting in

2] 1 ] g ]p9
22 2 2« N 1 « w 1 1 5 0. (2.6)0 2 21 2 1 2]t r ]z c ]t0 0

The next step in the derivation of the structure equation
is to eliminate the divergence D from the system of
equations, which leads to the equation

3 21 « ] ] g ]w
22 ¹ p9 1 2 5 0. (2.7)h2 2 21 2 1 2r c ]t ]z c ]t0 0 0

To eliminate w from the equations,

2] ] g ]
22 2 2« N 1 « (2.7) 2 2 (2.6)0 2 21 2 1 2]t ]z c ]t0

and an equation for p9 is obtained

2 3 2] 1 « ]
22 2 2 2« N 1 « 2 ¹ p90 h2 2 21 2 1 2]t r c ]t0 0

2] g 1 ] g ] p9
2 2 2 5 0. (2.8)

2 2 21 2 1 2]z c r ]z c ]t0 0 0

For isothermal T0, divide (2.8) by RT0 and apply the
relation

2] g 1 1 ] g g 1 ] N02 5 1 2 5 1
2 21 2 1 2 1 2]z c p p ]z RT c p ]z g0 0 0 0 0 0

to obtain the scaled equation

2 3 2] « ]
22 2 2 2« N 1 « 2 ¹ p90 h2 2 21 21 2]t c ]t0

2 2] N ] g ] p902 2 1 5 0. (2.9)
2 21 21 2]z g ]z c ]t0

Following Browning et al. (2000), assume that ]w/]t 5
0 in (2.3), gr0w 5 0 in (2.5), and define f9 5 p9/r0.
Then the scaled equation becomes

2 2 2 2N ] ] ]0 22 2 2« f9 2 « N ¹ f9 2 f9 5 0. (2.10)0 h2 2 2 2c ]t ]z ]t0

This equation is identical to the gravity wave equation
(3.4) in Browning et al. (2000) when the heat source H
is included

2 2] ] f9
2 21 22 2 22c (gs̃) 1 « 2 « c ¹ f90 0 h2 2[ ]]z ]t

] ]
22 25 2« c H. (2.11)0 ]z ]t
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In order to obtain error estimates in the following sec-
tion, symmetrize the governing equations using the
transformation

f u 5 u, f y 5 y , f w 5 w, f s 5 s9,1 2 3 4

f p 5 p9,5

where
3/2 Gz 3/2 Gz 1/2 Gzf 5 « e , f 5 « e , f 5 « e ,1 2 3

N0 Gzf 5 f , f 5 c r e , and4 3 5 0 0g

g g
1/2(gp r ) 5 c r , G 5 , S 5 c 2G 1 .0 0 0 0 0 21 22RT c0 0

The above diagonal similarity transformation leads to
the symmetric hyperbolic system

du ]p
23/21 « c 5 00dt ]x

dy ]p
23/21 « c 5 00dt ]y

dw ]p
25/2 25/2 221 « c 1 « Sp 1 « N s 5 00 0dt ]z

ds
222 « N w 5 00dt

dp ]u ]w
23/2 25/2 25/21 « c 1 « c 2 « Sw 5 0,0 0dt ]x ]z

which can be written as

]u ]u ]u ]u
1 A 1 A 1 A 1 Bu 5 0,1 2 3]t ]x ]y ]z

where u 5 ( , , , , ) andu y w s p

23/2 u 0 0 0 « c0 0

0 u 0 0 00 
A 5 0 0 u 0 0 , 1 0

0 0 0 u 00 
23/2« c 0 0 0 u0 0 

 y 0 0 0 00

23/20 y 0 0 « c0 0 
A 5 0 0 y 0 0 , 2 0

0 0 0 y 00 
23/20 « c 0 0 y0 0 

 w 0 0 0 00

0 w 0 0 00 
25/2A 5 0 0 w 0 « c , 3 0 0

0 0 0 w 00 
25/20 0 « c 0 w0 0 

 0 0 0 0 0

0 0 0 0 0 
22 25/2B 5 0 0 0 « N « S . 0

220 0 2« N 0 00 
25/20 0 2« S 0 0 

Applying the Fourier transformation in space, with k 5
(k, l, m) being the real dual variable and a hat denoting
the transform of a variable, the system becomes

]û
1 iA(k)û 1 idIû 5 0, (2.12)

]t

where d 5 u0k 1 y0l 1 w0m,

23/2 0 0 0 0 « c k0

23/20 0 0 0 « c l0 
22 25/2A(k) 5 0 0 0 i« N « (c m 1 iS) 0 0

220 0 i« N 0 00 
23/2 23/2 25/2« c k « c l « (c m 1 iS) 0 00 0 0 

and iA(k) 1 idI is the symbol of the spatial part of the
PDE. Given that the coefficient matrices Ai are sym-
metric, and B is skew-symmetric, it is possible to find
a unitary similarity transformation P that diagonalizes
the Hermitian matrix A, that is, PAP21 5 L, where P21

5 T 5 P* and L is a diagonal matrix. MultiplyingP
(2.13) by P,

]P û
1 iL(k)P û 1 idIP û 5 0.

]t

Each component of Pû is decoupled from the other com-
ponents and the jth component of Pû in the homoge-
neous case varies as exp(iljt), where lj is the jth ei-
genvalue of iA 1 idI.

Thus to determine the time behavior of the compo-
nents of Pû, it is necessary to determine the roots of
the characteristic polynomial of the symbol of the op-
erator. The eigenvalues of A are roots of the equation

det(A 2 lI) 5 0
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and the eigenvalues of A 1 dI are l9 5 l 1 d. The
resulting fifth-degree polynomial has a root l 5 0, cor-
responding to advection, and the eigenvalues associated
with fast modes are roots of the quartic

4 2 2l S 1 «N025 2 2 2 2 22 « l « (k 1 l ) 1 m 1
2 2[ ]c c0 0

27 2 2 21 « N (k 1 l ) 5 0.0

Solving the above quartic for l2,

2 2 2c S 1 «N0 02 25 2 2 2 2l ø « « (k 1 l ) 1 m 1
2[ ]2 c0

22 2 2c S 1 «N0 025 2 2 2 26 « « (k 1 l ) 1 m 1
25[ ]2 c0

1/2
2 2 2N (k 1 l )032 4« .

2 6c0

Because «3 K 1 the first term inside the square root is
much larger than the second term and thus choosing the
positive sign above leads to an expression for the ei-
genvalues associated with acoustic waves

2 25 2 2 2 2 2 25 2 2l ø « c [« (k 1 l ) 1 m ] 1 « (S 1 «N ).0 0

The negative sign leads to eigenvalues corresponding
to gravity waves:

22 2 2 2« N (k 1 l )02 22 2l ø [ « l .g2 2 2 2 2 2 2« (k 1 l ) 1 m 1 (S 1 «N )/c0 0

For an analysis of the stability and accuracy of gravity
waves we have introduced l 5 «21lg, where lg 5 O(1)
for this particular scaling of the equations.

3. Stability and accuracy

The stability and accuracy of the semi-implicit
scheme are analyzed in this section. To simplify the
analysis, we will assume discretization in space employs
centered second-order finite differences on an Arakawa
C grid. Finite differences result in approximate wave
numbers in Fourier space, for example,

sin(kDx)
d̃ 5 u k̃ 1 y l̃ 1 w m̃, k̃ 5 ,0 0 0 Dx

sin(lDy) sin(mDz)
l̃ 5 , m̃ 5 .

Dy Dz

A three-time-level semi-implicit time discretization of
the governing equations is equivalent to a Crank–Nich-
olson scheme applied to the off-diagonal terms com-
bined with an explicit leapfrog scheme for the diagonal
(advection) terms:

n11 n21 n11 n21v̂ 2 v̂ v̂ 1 v̂
n˜1 iA 1 id̃I v̂ 5 0. (3.1)

2Dt 2

Rearranging terms,
n11 n n21˜ ˜(I 1 DtiA)v̂ 1 2Dtid̃I v̂ 2 (I 2 DtiA)v̂ 5 0,

where Ã 5 A(k̃), d̃ 5 d(k̃), and the matrix Ã has the
same eigenvalues as A with k 5 (k, l, m) replaced by
k̃ 5 (k̃, l̃, m̃). Thus, there exists a unitary matrix P̃ that
diagonalizes the Hermitian matrix Ã, such that P̃ÃP̃21

5 and P̃21 5 P̃*. The transformed system of equa-L̃
tions becomes

n11 n˜ ˜ ˜(I 1 DtiL)P v̂ 1 2Dtid̃P v̂
n21˜ ˜2 (I 2 DtiL)P v̂ 5 0, (3.2)

and to establish the boundedness of the discrete solu-
tions it suffices to show that each component of the
transformed vector ŵ 5 P̃v̂ remains bounded, because
the transformation itself is norm preserving \P̃v̂\ 5 \v̂\.

For the advective mode, stability is determined by the
leapfrog scheme

n11 n n21ŵ 1 2Dtid̃ŵ 2 ŵ 5 0j j j (3.3)

with characteristic polynomial
2z 1 2Dtid̃z 2 1 5 0.

Solutions are determined by the two roots
2 2 1/2z 5 2iDtd̃ 6 (1 2 Dt d̃ ) .1,2

From the constant term of the characteristic polynomial
it can be seen that the product of the magnitude of the
roots must be 1. Thus for stability both roots must have
magnitude 1, which is the case if and only if 1 2 Dt2d̃2

. 0, that is,

| Dtd̃ | # 1,

which ensures that the radicand is positive so the second
term will be real. The stability criteria for fast modes
can be obtained by examining each eigenvalue of the
Fourier transformed version of the discretized system
in turn according to the scalar equation

n11 n(1 1 Dtil̃)ŵ 1 2Dtid̃ŵj j

n212 (1 2 Dtil̃)ŵ 5 0, (3.4)j

where 5 l(k̃), with characteristic polynomiall̃

2(1 1 Dtil̃)z 1 2Dtid̃z 2 (1 2 Dtil̃) 5 0.

The roots of this quadratic are given by
2 2 2 2 1/22iDtd̃ 6 (1 1 Dt l 2 Dt d̃ )

z 5 . (3.5)1,2 1 1 iDtl̃

Using a similar argument, Kwizak and Robert (1971)
have shown that for stability the product of the mag-
nitudes of the roots again must be 1, which is the case
if and only if the radicand is positive:

2 2 2 2Dt d̃ # 1 1 Dt l̃ .
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In order to determine the accuracy of the semi-implicit
scheme for both advection and gravity wave modes, the
Taylor series expansions of the continuous and discrete
amplification factors are compared (see Gustafsson et
al. 1995). The continuous (scalar) wave equation in Fou-
rier space and its solution are given by

]ŵ
2ilt1 ilŵ 5 0, ŵ 5 e ŵ .0]t

Solutions of the difference equations (3.3) and (3.4) take
the general form

n nŵ 5 s z 1 s z ,1 1 2 2

where s1 and s2 are parameters determined by the initial
data. One of the two roots represents the computational
mode and we assume that the initial data is chosen so
that this mode is not excited. Consider the advective
eigenvalue lR 5 u0k. The Taylor series expansion of the
continuous amplification factor is given by

1
2 2 2 3exp(2il Dt) 5 1 2 iu kDt 2 u k Dt 1 O(Dt )R 0 02

and in the discrete case for roots of the advection equa-
tion (3.3) with R 5 u0k̃l̃

1
2 2 2 3z 5 1 2 iu k̃Dt 2 u k̃ Dt 1 O(Dt ).1 0 02

From the expansion of the approximate wavenumber k̃,

3 2sin(kDx) k Dx
4k 2 k̃ 5 k 2 k 5 2 1 O(Dx )

kDx 6

and it follows that
3 2exp( 2il Dt) 5 z 1 O(k Dx Dt).R 1

It is well known that the use of approximately ten spatial
mesh points per wave provides reasonable numerical
accuracy of a second-order finite-difference approxi-
mation of a spatial derivative (Gustafsson et al. 1995).
In the numerical approximation of the scaled system
this is equivalent to choosing Dx 5 O(«). The Courant
condition for the advective mode is Dt , Dx/maxd̃, and
because max d̃ 5 O(1), this means that Dt must be O(«)
in order to satisfy the Courant condition. In that case
there are also approximately 10 points per temporal
wavenumber for the advective mode; that is, the nu-
merical approximations of the time derivative of the
advective mode should also be accurate. Based on this
logic, it seems reasonable to expect that this same time
step might also produce accurate approximations of the
temporal derivatives of the long gravity waves that are
produced by slowly evolving in time mesoscale heating
because those waves have the same timescale as the
advective mode (Browning and Kreiss 1997). The main
result of our paper is that the long gravity waves, with
k 5 «k9 where k9 is O (1), are accurately reproduced
with a time step that provides reasonable accuracy for

the advective mode. The Taylor series expansion of the
discrete amplification factor for the semi-implicit scalar
equation (3.4) is given by

1
21 22 2 2 3z 5 1 2 i« l̃ Dt 2 « l̃ Dt 1 O(Dt ).1 g g2

The above expansion is only valid when the following
series converge inside the unit disc in the complex plane.
In the denominator of (3.5), let z 5 i«21

gDtl̃

1
25 1 2 z 1 O(z ), |z| , 1

1 1 z

and in the numerator z 5 «22 Dt2,2l̃g

1
1/2 2(1 1 z) 5 1 1 z 1 O(z ), |z| , 1.

2

Thus for large-scale gravity waves, lg(k̃ 5 «) have an
O(«) error and lg(k̃ 5 1) have an O(1) error. If Dt is
chosen to be O(«), then convergence is assured for k̃ 5
«k̃9. For these gravity waves

3 2l 2 l̃ 5 O(k Dx )g g

and therefore

3 2exp( 2il Dt) 5 z 1 O(k Dx Dt).g 1

To obtain the truncation error from the continuous Pû
and discrete P̃v̂ vectors in Fourier space, first introduce
the discretization operators

n11 n21 n11 n21c 2 c c 2 c
D (c) 5 , m (c) 5 .t t2Dt 2

The continuous wave equation with forcing is given by

]û
1 iA(k)û 1 idIû 2 f̂ 5 0 (3.6)

]t

and the corresponding time and space discretized sys-
tem is

nD v̂ 1 iA(k̃) m v̂ 1 id̃Iv̂ 2 f̂ 5 0.t t (3.7)

The truncation error t is obtained by substituting û into
this equation

D û 1 iA(k̃) m û 1 id̃Iû 2 f̂ 5 t.t t (3.8)

In transformed variables, expand each term above as
follows:

21 21 21˜ ˜ ˜ ˜P (D P û) 5 P [D P û 1 (P 2 P)P D P û]t t t

21 21 21 ˜˜ ˜ ˜ ˜ ˜ ˜P (PAP m P û) 5 P [Lm P û 1 (L 2 L)m P ût t t

˜ ˜1 L(P 2 P)m û]t

21 21˜ ˜ ˜P (d̃P û) 5 P [dP û 1 (d̃ 2 d)P û
˜1 d̃(P 2 P)û]

21 21˜ ˜ ˜ ˜P (P f̂ ) 5 P [P f̂ 1 (P 2 P)f̂ ],
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where the large terms satisfying (3.6) drop out and it
has been shown that

2 2L(k̃) 2 L(k) 5 O(Dx ), d̃ 2 d 5 O(Dx ).

The Taylor series expansion of P̃ is
2P(k̃) 5 P(k) 1 P (k)(k̃ 2 k) 1 O(k̃ 2 k) ,k

where
2P(k̃) 2 P(k) 5 O(k̃ 2 k) 5 O(Dx )

assuming Pk is bounded for fixed k. Here assume that
there is no energy in the variables and waves where we
cannot prove that the truncation error is small. This
implies the application of proper initialization proce-
dures even for the semi-implicit method. Therefore, in
transformed variables (3.8) becomes

2 2 2 221P̃ [O(Dx ) 1 O(Dt )] 5 O(Dx ) 1 O(Dt ).

Now define ê 5 û 2 v̂, the resulting error equation is
given by

21P̃ [D P ê 1 iA(k̃)m P ê 1 id̃P ê]t t

2 25 O(Dx ) 1 O(Dt ), (3.9)

where the forcing is replaced by the truncation error.
Assuming the error at the initial time is zero and stability
of the finite-difference method, by Duhamel’s principle
the error will be of the size of the forcing.

4. Numerical algorithms

Space discretization operators are the forward D1 and
backward D2 differences and average mc on a staggered
Arakawa C grid in the horizontal direction and Lorenz
grid in the vertical direction. Thus, scalar quantities are
located at grid cell centers, whereas vector components
are on cell faces. Time discretization operators appear-
ing in the leapfrog or three-time-level semi-implicit
scheme are given by

n11 n21c 2 c
D (c) 5 ,t 2Dt

n11 n21c 1 c
n21m (c) 5 5 DtD (c) 1 c .t t2

Therefore, a fully 3D semi-implicit scheme applied to
the compressible governing equations in dimensional
form results in

21 nD (u) 1 m r D (p9) 5 ft t 0 x2 u

21 nD (y) 1 m r D (p9) 5 ft t 0 y2 y

z 21 nD (w) 1 m (r ) D (p9) 2 m B(s9, p9) 5 ft t 0 z2 t w

nD (p9) 1 gp m D 2 m gr m (w) 5 ft 0 t t 0 z p9

2N0 nD (s9) 2 m m (w) 5 f ,t t z s9g

where the contain nonlinear advection, Coriolis, andnf c

mixing terms. Time averages are replaced by differences
to avoid numerical cancellation (Laprise and Girard
1990) and thus only time tendencies appear on the left-
hand side. The remaining terms at time level n 2 1 are
placed on the right-hand side of the equations:

21D (u) 1 Dtr D D (p9) 5 q (4.1)t 0 x2 t u

21D (y) 1 Dtr D D (p9) 5 q (4.2)t 0 y2 t y

z 21D (w) 1 Dt(r ) D D (p9) 2 DtD B(s9, p9) 5 qt 0 z2 t t w

(4.3)

D (p9) 1 Dtgp D D 2 Dtgr m D (w) 5 q (4.4)t 0 t 0 z t p9

2N0D (s9) 2 Dt m D (w) 5 q , (4.5)t z t s9g

where the right-hand sides now become
n 21 n21q 5 f 2 r D (p9)u u 0 x2

n 21 n21q 5 f 2 r D (p9)y y 0 y2

zn 21 n21 n21q 5 f 2 (r ) D (p9) 1 B(s9, p9)w w 0 z2

n n21 n21q 5 f 2 gp D 1 gr m (w)p9 p9 0 0 z

2N0n n21q 5 f 1 m (w) .s9 s9 zg

To obtain an implicit system of equations for the pres-
sure perturbation p9, we proceed to eliminate all other
prognostic variables from Eqs. (4.1)–(4.5). Eliminating
the buoyancy B and horizontal divergence Dh from the
system of equations results in

2 2(1 1 Dt m N m )D (w)z 0 z t

1 g
1 Dt D 1 m D (p9) 5 q* (4.6)z z2 z t w1 2r gp0 0

1 1
2 22 Dt ¹ D (p9)h t1 2gp r0 0

g
1 Dt D 2 m D (w) 5 q9 , (4.7)z1 z t p921 2c0

where

1
q* 5 q 2 Dtgm q , q9 5 q 2 DtD (q , q ).w w z s9 p9 p9 h u ygp0

Define the operators
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1 g
2 2 (1)N 5 (1 1 Dt m N m ), D 5 D 1 m ,z 0 z z z z2 z1 2r gp0 0

g
(2)D 5 D 2 m .z z1 z21 2c0

Solving directly for Dt(w)
21 (1) 21D (w) 1 DtN D D (p9) 5 N q* (4.8)t z t w

1 1
2 2 (2)2 Dt ¹ D (p9) 1 DtD D (w) 5 q9 . (4.9)h t z t p921 2r c0 0

Substitute (4.8) into (4.9) to obtain the discrete equation,
approximating the elliptic structure equation

1 1
2 2 2 (2) 21 (1)2 Dt ¹ D (p9) 2 Dt D N D D (p9) 5 q*,h t z z t p921 2r c0 0

(4.10)

where
(2) 21q* 5 q9 2 Dt D N q*.p9 p9 z w

The remaining tendencies are obtained by back substi-
tution as follows:

21D (u) 5 q 2 Dtr D D (p9) (4.11)t u 0 x2 t

21D (y) 5 q 2 Dtr D D (p9) (4.12)t y 0 y2 t

21 (1)D (w) 5 N [q* 2 DtD D (p9)] (4.13)t w z t

2N0D (s9) 5 q 1 Dt m D (w). (4.14)t s9 z tg

The discrete elliptic operator appearing in Eq. (4.10) is
separable. The vertical operator is tridiagonal and has
constant coefficients for an isothermal atmosphere. A
direct linear system solver can be applied, which is
based on fast tensor-product techniques (Swarztrauber
1985). In the case of periodic boundary conditions, the
eigenvalues of the horizontal Laplacian operator can be
easily determined and precomputed. Application of a
(real to complex) fast Fourier transform (FFT) to (4.10)
in each of the horizontal directions leads to a sequence
of tridiagonal systems to solve in the vertical direction.
Given an Nx 3 Ny 3 Nz grid, these tridiagonal systems
take the form

1 1
2 ̂2 Dt (l 1 l ) D (p9)l m t2[ ]r c0 0

2 (2) 21 (1) ̂ ̂2 Dt D N D D (p9) 5 q*, (4.15)z z t p9

where

4 pl
2l 5 2 sin , l 5 0, . . . N /2,l x2 1 2Dx Nx

4 pm
2l 5 2 sin , m 5 0, . . . N /2m y2 1 2Dy Ny

are the eigenvalues of the discrete horizontal Laplacian
operator in the x and y directions. The solution in phys-
ical space is obtained by applying the inverse FFT to
the solutions. Assuming Nx 5 Ny 5 Nz, the 2D FFT
requires O(N3 logN) floating point operations (flops),
whereas the vertical solves involve O(N3) flops. There-
fore the dominant cost of the semi-implicit time-step-
ping scheme is associated with the FFT computation
within the elliptic solver. Multigrid solvers are a possible
alternative with an optimal complexity of O(N3) but can
have a large constant factor depending on the problem.
It should be emphasized at this point that a constant
coefficient linear system is obtained by assuming that
the pressure and density perturbations remain small
compared to the reference state and thus we use r0 in
the momentum equations instead of linearizing every
time step with rn. Furthermore, topography has not been
introduced into the model because we are primarily in-
terested in the accurate simulation of gravity waves gen-
erated by mesoscale storms. For gravity waves with
wavelengths larger than the characteristic length scale
of the heating, the semi-implicit scheme accurately re-
produces an explicit simulation at a fraction of the com-
putational cost. If the accurate simulation of long gravity
waves is not essential, then the reduced system of
Browning and Kreiss (1997) provides an even faster
alternative. The reduced scheme has a computational
cost of O(N2) to advance the momentum equations (hy-
perbolic part) and O(N2 logN) per vertical level to solve
a Poisson problem or O(N3 logN) overall. Although the
reduced system model has the same operation count as
the semi-implicit model, the constant factor is much
smaller because there are fewer equations and there is
less averaging.

5. Numerical examples

Following Browning and Kreiss (1997), a number of
the theoretical results in the previous sections can be
demonstrated by specifying a heating function H(x, y,
z, t) that has spatial and temporal distributions similar
to those observed in the atmosphere. In particular, they
chose H 5 H0H1(x, y)H2(z)H3(t), where

21H 5 0.5 m s , (5.1)0

2 2 2H (x, y) 5 exp{2[(x 2 L /2) 1 (y 2 L /2) ]/r },1 e

3r 5 50 3 10 m, (5.2)e

H (z) 5 sin(2pz/D), (5.3)2

2 22(t26 · 3600) /(2 · 3600)H (t) 5 e , (5.4)3

L 5 900 3 103 m is the length and width of the domain,
and D 5 12 3 103 m is the depth. The lateral dimensions
of the domain were intentionally chosen to be consid-
erably larger than that of the heating to allow the gravity
waves to behave more as they would in the real at-
mosphere. The spatial component of the heating H0H1H2
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FIG. 1. The spatial component of the heating H0H1H2 at z 5 9 km.
The contour interval is 0.025 m s21.

FIG. 2. The pressure perturbation p9 (Pa) from the explicit model
(Dt 5 1 s) plotted at the grid points A 5 (1, 1, 1), B 5 (21, 21, 1),
and C 5 (41, 41, 1) as a function of time (h).

FIG. 3. The eastward component of the velocity u (m s21) from the
explicit model (Dt 5 1 s) plotted at the grid points A 5 (1, 1, 1), B
5 (21, 21, 1), and C 5 (41, 41, 1) as a function of time (h).

(m s21) at z 5 9 km is shown in Fig. 1 and should be
compared with the stratiform rain region of Houze’s
schematic of a typical mesoscale convective system
(Houze 1989, his Fig. 1). Houze states that the mag-
nitude of the vertical velocity in a wide range of MCS
is on the order of 0.1–0.5 ms21. For slowly varying
solutions of (2.1)–(2.5), the maximum vertical velocity
is determined by the maximum value of H and from
(5.1) that will be 0.5 m s21. The time dependence of
the heating (5.4) is a Gaussian distribution centered at
6 h with an e-folding parameter of 2 h.

In earlier work (Browning and Kreiss 1997) the ac-
curacy of the reduced system model was demonstrated
by computing the solutions of the full model using an
explicit time-stepping scheme and showing the differ-
ences between the two remained small as predicted by
the mathematical theory. It was also found that the ex-
plicit model solutions compared favorably with those
produced by the multiscale model. Here we show that
the semi-implicit time-stepping scheme described in
section 4 can also accurately simulate gravity waves
with wavelengths larger than the characteristic length
scale of the heat source. Explicit simulations of a model
based on the full system will be compared against the
semi-implicit scheme for the forcing specified above.
As in the earlier study, it is assumed that the Coriolis
parameter is f 5 1024 s21 and that the lateral boundary
conditions are periodic. The reference state is computed
from an isothermal atmosphere whose reference tem-
perature is 340 K. The top of the model domain is a
rigid lid and there is no topography. The computational
grid consists of 90 3 90 3 12 points corresponding to

a horizontal resolution of Dx 5 Dy 5 10 km. A Robert
filter (Asselin 1972) was not needed to produce these
results. For stability, the time step was set to Dt 5 1 s
in the explicit model runs, whereas Dt 5 300 s was
possible in the semi-implicit simulations because of the
small advection speeds in this example.

Figures 2 and 3 are plots from the explicit model of
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FIG. 4. The pressure perturbation p9 (Pa) from the semi-implicit
model (Dt 5 300 s) plotted at the grid points A 5 (1, 1, 1), B 5
(21, 21, 1), and C 5 (41, 41, 1) as a function of time (h).

FIG. 5. The eastward component of the velocity u (m s21) from the
semi-implicit model (Dt 5 300 s) plotted at the grid points A 5 (1,
1, 1), B 5 (21, 21, 1), and C 5 (41, 41, 1) as a function of time (h).

FIG. 6. The pressure perturbation at the surface from the semi-
implicit model at 24 h. Contour interval is 2.5 Pa.

the pressure perturbation p (Pa) and eastward compo-
nent of the wind u (m s21) at the three grid points with
indices A 5 (1, 1, 1), B 5 (21, 21, 1), and C 5 (41,
41, 1) as a function of time. Point A is at the lower-left
corner of the domain (as far away from the storm as
possible), point B is approximately halfway along the
line from point A to the center point at this level, and
point C is on the same line close to the center of the
storm. Note that the pressure at point C increases as the
storm intensifies and then decreases as the storm sub-
sides after 6 h. Also the pressure has a period roughly
the same as the period of the heating (ø6–7 h) and the
dominant component of the solution reaches a steady
state after about 12 h, so all the oscillations in the pres-
sure and velocity after that time are mainly due to grav-
ity waves. The vertical velocity (Browning and Kreiss
1997, their Fig. 7) in the storm decreases in magnitude
as the storm diminishes as expected. The magnitude of
the deviations of the vertical velocity from the gravity
wave component of the solution (0.03 m s21) is an order
of magnitude smaller than the maximum magnitude of
the dominant component of the solution (0.5 m s21).

The semi-implicit simulation results for the pressure
perturbation p (Pa) and eastward component of the wind
u (m s21) are plotted in Figs. 4 and 5 at the three grid
points, A, B, and C. The results are essentially identical
when compared with the explicit runs. To emphasize
that only large-scale gravity waves were generated in
both model runs, Fig. 6 is a contour plot of the pressure
perturbation at the surface at 24 h. The scale of the
gravity waves is clearly much larger than the heating
term shown in Fig. 1. In order to verify that the scaling

arguments in section 2 are valid for the specified forcing
function, small terms in the linear system (4.10) cor-
responding to small terms in the gravity wave equation
(2.10) were dropped for a third model run. As expected,
the computed solution closely follows the explicit and
semi-implicit solutions. In order to compare the com-
putational requirements of the semi-implicit and reduced
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models, both codes were run on an SGI Origin 2000
computer at the National Center for Atmospheric Re-
search. The reduced model was run with Dt 5 300 s
and required 0.6 s for a single level run of 24 h. An
estimate of the time for a 12-level run is 12 3 0.6 5
7.2 s. The semi-implicit scheme was also run with Dt
5 300 s for 24 h and required 70 s. Therefore, the
reduced system model is ten times faster than the semi-
implicit model. It should be noted, however, that the
reduced model employs a nonstaggered Arakawa A grid
whereas the semi-implicit model is discretized on a C
grid.

6. Conclusions

In this paper we have shown that a fully 3D semi-
implicit time-stepping scheme can accurately reproduce
gravity waves with wavelengths larger than the char-
acteristic length scale of the heat source in a mesoscale
storm at midlatitudes. The reduced system model of
Browning and Kreiss (1997) can reproduce the domi-
nant component of the solution, which contains most of
the energy in the vicinity of the storm that is meteo-
rologically significant. The computing time for the re-
duced model is ten times faster than the 3D semi-im-
plicit model for a mesoscale convective system. How-
ever, the reduced system is only useful if studying a
mesoscale storm in isolation when no large-scale fea-
tures are present in the same domain. It should also be
noted that the presence of strong jets in the model do-
main could reduce the advantage of both the semi-im-
plicit and reduced models. If we consider the case of
the multiscale model (Browning and Kreiss 1986), with
a 5 (Dz/Dx)2, then for the mesoscale case this factor is
(104 m/105 m)2 5 1021 so the time step is a factor of
10 larger than the explicit case (a 5 1). This makes the
multiscale model more competitive with the semi-im-
plicit model in the realistic case when jets are present,
that is, then the ratio of the time steps should just be
that of the horizontal sound speed divided by the jet
speed (300 m s21/100 m s21 5 3). As long as the elliptic
solver is sufficiently fast, the semi-implicit method will
be faster than the multiscale model. But if the intro-
duction of topography necessitates the use of an iterative
elliptic solver such as GMRES (Saad and Schultz 1986;
Skamarock et al. 1997; Thomas et al. 1998), then this
may not be the case. We plan to address this issue and
the question of open boundary conditions for a 3D semi-
implicit discretization in future papers.
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